Information requirements
(air-to-air air conditioners)

Model(s):DC-60KDBS(W), DOX-60TKDBS(W)							
Outdoor side heat exchanger of air conditioner	air						
Indoor side heat exchanger of air conditioner	air						
Type	compressor driven vapour compression						
If applicable: driver of compressor	electric motor						
Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated cooling capacity	$\mathrm{P}_{\text {rated, }}$	16.0	kW	Seasonal space cooling energy efficiency	$\eta_{\mathrm{s}, \mathrm{c}}$	234.4	\%
Declared cooling capacity for part load at given outdoor temperatures T_{j} and indoor $27^{\circ} / 19^{\circ} \mathrm{C}$ (dry/wet bulb)				Declared energy efficiency ratiofor part load at given outdoor temperatures T_{j}			
$\mathrm{T}_{\mathrm{j}}=+35^{\circ} \mathrm{C}$	Pdc	16.27	kW	$\mathrm{T}_{\mathrm{j}}=+35^{\circ} \mathrm{C}$	$\mathrm{EER}_{\mathrm{d}}$	2.80	-
$\mathrm{T}_{\mathrm{j}}=+30^{\circ} \mathrm{C}$	Pdc	11.51	kW	$\mathrm{T}_{\mathrm{j}}=+3{ }^{\circ} \mathrm{C}$	$\mathrm{EER}_{\mathrm{d}}$	4.41	-
$\mathrm{T}_{\mathrm{j}}=+25^{\circ} \mathrm{C}$	Pdc	7.39	kW	$\mathrm{T}_{\mathrm{j}}=+25^{\circ} \mathrm{C}$	$\mathrm{EER}_{\mathrm{d}}$	6.43	-
$\mathrm{T}_{\mathrm{j}}=+20^{\circ} \mathrm{C}$	Pdc	3.72	kW	$\mathrm{T}_{\mathrm{j}}=+2{ }^{\circ} \mathrm{C}$	$\mathrm{EER}_{\mathrm{d}}$	11.25	-
Degradation co-efficient for air conditioners(*)	C_{dc}	0.25	-				-
Power consumption in modes other than 'active mode'							
Off mode	$\mathrm{P}_{\text {OFF }}$	0.008	kW	Crankcase heater mode	P_{CK}	0.000	kW
Thermostat-off mode	$\mathrm{P}_{\text {то }}$	0.007	kW	Standby mode	$\mathrm{P}_{\text {SB }}$	0.008	kW
Other items							
Capacity control	variable			For air-to-air air conditioner: air flow rate, outdoor measured	-	5500	$\mathrm{m}^{3} / \mathrm{h}$
Sound power level, indoor/outdoor	$\mathrm{L}_{\text {WA }}$	69/72	dB				
If engine driven: Emissions of nitrogen oxides	NOx(**)	-	$\mathrm{mg} / \mathrm{kWh}$ fuel input GCV				
GWP of the refrigerant	675		$\mathrm{kg} \mathrm{CO}_{2} \mathrm{eq}$ (100 years)				
Contact details: sat.eurofredgroup.com.				Name and address of the supplier: EUROFRED S.A. C/ Marques de Sentmenat, 9708029 Barcelona, Spain			
(*) If C_{dc} is not determined by measurement then the default degradation coefficient air conditioners shall be 0,25 . (**) From 26 September 2018. Where information relates to multi-split air conditioners, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or importer.							

Information requirements
(heat pump)

Model(s):DC-60KDBS(W) , DOX-60TKDBS(W)							
Outdoor side heat exchanger of heat pump	air						
Indoor side heat exchanger of heat pump	air						
Indication if the heater is equipped with a supplementary heater	no						
If applicable: driver of compressor	electric motor						
Parameters declared for	Average climate condition						
Item	symbol	value	unit	Item	symbol	value	unit
Rated heating capacity	$\mathrm{P}_{\text {rated, }}$	17.0	kW	Seasonal space heating energy efficiency	$\eta_{\mathrm{s}, \mathrm{h}}$	151.0	\%
Declared heating capacity for part load at indoor temperature $20^{\circ} \mathrm{C}$ and outdoor temperature Tj				Declared coefficient of performance for part load at given outdoor temperatures T_{j}			
$\mathrm{T}_{\mathrm{j}}=-{ }^{\circ} \mathrm{C}$	Pdh	11.02	kW	$\mathrm{T}_{\mathrm{j}}=-7^{\circ} \mathrm{C}$	$\mathrm{COP}_{\mathrm{d}}$	2.48	-
$\mathrm{T}_{\mathrm{j}}=+2{ }^{\circ} \mathrm{C}$	Pdh	6.66	kW	$\mathrm{T}_{\mathrm{j}}=+2{ }^{\circ} \mathrm{C}$	$\mathrm{COP}_{\mathrm{d}}$	3.75	-
$\mathrm{T}_{\mathrm{j}}=+{ }^{\circ} \mathrm{C}$	Pdh	4.43	kW	$\mathrm{T}_{\mathrm{j}}=+{ }^{\circ} \mathrm{C}$	$\mathrm{COP}_{\mathrm{d}}$	5.14	-
$\mathrm{T}_{\mathrm{j}}=+12{ }^{\circ} \mathrm{C}$	Pdh	3.04	kW	$\mathrm{T}_{\mathrm{j}}=+12{ }^{\circ} \mathrm{C}$	$\mathrm{COP}_{\mathrm{d}}$	5.48	-
$\mathrm{T}_{\text {biv }}=$ bivalent temperature	Pdh	11.02	kW	$\mathrm{T}_{\text {biv }}=$ bivalent temperature	$\mathrm{COP}_{\mathrm{d}}$	2.48	-
$\mathrm{T}_{\mathrm{OL}}=$ operation limit	Pdh	11.61	kW	$\mathrm{T}_{\mathrm{OL}}=$ operation limit	$\mathrm{COP}_{\mathrm{d}}$	2.48	-
$\mathrm{Tj}=-15^{\circ} \mathrm{C}\left(\right.$ if $\left.\mathrm{TOL}<-20^{\circ} \mathrm{C}\right)$	Pdh	NA	kW	$\begin{aligned} & \mathrm{Tj}=-15^{\circ} \mathrm{C}\left(\text { if } \mathrm{TOL}<-20^{\circ}\right. \\ & \mathrm{C}) \end{aligned}$	$\mathrm{COP}_{\mathrm{d}}$	NA	-
Bivalent temperature	$\mathrm{T}_{\text {biv }}$	-7.00	${ }^{\circ} \mathrm{C}$	Operation limit temperature	$\mathrm{T}_{\text {ol }}$	-10.00	${ }^{\circ} \mathrm{C}$
Degradation co-efficient heat pumps(**)	C_{dh}	0.25	-				
Power consumption in modes other than 'active mode'				Supplementary heater			
Off mode	$\mathrm{P}_{\text {OFF }}$	0.008	kW	Back-up heating capacity $\left({ }^{*}\right)$	elbu	0.690	kW
Thermostat-off mode	$\mathrm{P}_{\text {TO }}$	0.019	kW	Type of energy input	Electric		
Crankcase heater mode	P_{CK}	0.000	kW	Standby mode	$\mathrm{P}_{\text {SB }}$	0.008	kW
Other items							
Capacity control	variable			air flow rate, outdoor measured			
Sound power level, indoor/outdoor measured	$\mathrm{L}_{\text {WA }}$	70/74	dB				
Emissions of nitrogen oxides (if applicable)	NOx(***)	-	$\begin{gathered} \mathrm{mg} / \mathrm{kWh} \\ \text { input GCV } \end{gathered}$	Rated brine or water flow	-	-	$\mathrm{m}^{3} / \mathrm{h}$
GWP of the refrigerant	675		$\mathrm{kg} \mathrm{CO}_{2} \mathrm{eq}$ (100 years)	exchanger	-		
Contact details: sat.eurofredgroup.com.				Name and address of the supplier: EUROFRED S.A. C/ Marques de Sentmenat, 9708029 Barcelona, Spain			
${ }^{(* *)}$ If Cdh is not determined by measurement then the default degradation coefficient of heat pumps shall be 0,25 . (***) From 26 September 2018. Where information relates to multi-split heat pumps, the test result and performance data may be obtained on the basis of the performance of the outdoor unit, with a combination of indoor unit(s) recommended by the manufacturer or importer.							

